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Panel Data is Everywhere

Onset Treatment Increased?
1979-81 card Miami’s workforce gains 45,000 Cuban refugees ~ Unemployment
1989 svadie et a California levies a 25 cents/pack Cigarette Tax Health
Summer 1993 OK Soda released in select areas Coke Sales
2015 Berkeley levies a 1 cent/ounce soda tax Health

April 7, 2020 Wisconsin holds an election Death

All the time, 2020  States open and close gyms, barber shops, etc. Death

At its simplest, it looks like this
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Control

Exposed to Treatment

Treated

That's what this talk is about



Where there’s Panel Data, there’s Diff-in-Diff

Differences-in-Differences estimation has become an
increasingly popular way to estimate causal relationships.

How Much Should We Trust Difference in Differences Estimation?
Bertrand, Duflo, and Mullainathan [2004]
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Difference-in-Differences Concepts
Synthetic Difference-in-Differences
Theory of Identification and Inference

Panel Data Models and Reality



Difference-in-Differences Concepts



The Diff-in-Diff Idea

When Berkeley implemented a soda tax,
we compared to San Francisco

While Berkeley, the first U.S. city to pass a “soda tax,” saw
a substantial decline of 0.13 times/day in the consumption of
soda in the months following implementation of the tax in
March 2015, neighboring San Francisco, where a soda-tax
measure was defeated, saw a 0.03 times/day increase

Absent treatment, Berkeley might have increased like SF.



San Francisco
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This is just speculation | No real evidence against it

This is what causal inference in observational studies is about.

- We can't know we're right.
- At best, we make claims the evidence doesn't rule out.



Some alternatives don’t meet this standard

Absent treatment, maybe Absent treatment, maybe
nothing would change in Berkeley. Berkeley would be just like SF.
San Francisc® San Francisc ? \

Hallucinated Constant Berkeley

Beyy Bey
keley, kele,,

Flaw: this isn't what happened in SF. Flaw: this wasn't true before treatment.



Testing the Diff-in-Diff Premise

Absent treatment, Berkeley would have increased like SF.

When we have more cities, we can (sort of) test this.

-+ The choice to compare to SF seems arbitrary. Why not Oakland?
- If that choice makes a difference, our estimate seems arbitrary too.
- If it doesn't, we can feel a little more confident.

This doesn't really test our premise — we can’t — but it's suggestive.

Bad: Controls follow Different Trends.  Good: Controls follow Parallel Trends.

San Francisco

Hallucinated parallel Berkeley Hallucinated parallel Berkeley
Oa/(/a,,d
Tiig-in-dify Tdiff-in-diff
8,
Be’ke/ey e”fe/ey
If we'd compared to Oakland, No matter who we compare to,
we'd have estimated zero! we get the same estimate.

Or: Comparing controls, we estimate zero. 9



Testing the Diff-in-Diff Premise

When we have more time periods, we can do something similar.

- If we'd done the same comparison last year, would diff-in-diff have worked?

- Treament was absent last year, so we know we should estimate zero.

Good: Pre-Treatment Parallel Trends.
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When there’s no treatment, we'd have
estimated zero.

Bad: Different Pre-Treatment Trends!
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When there’s no treatment, we'd have
estimated a large effect.



Diff-in-Diff with Larger Panels

In 1989, California imposed a 25 cents/pack excise tax on cigarettes.
We estimate the effect on smoking in California after implementation.

1970-1988 1989-2000

Other States

Exposed to Treatment

California

We compare pre and post-treatment averages of treated units and controls
to estimate the average treatment effect under exposure — the effect
where and when treatment happened.

We'll doubt this estimate if it's sensitive to arbitrary-seeming choices of

1. the pre-treatment periods included.
2. the control units included.



When You Use ‘All the Data’, Checks Fail: We don’t get Parallel Trends

Abadie et al. [2010] considers data from 1970-2000 with most US states as controls.

- Choice of pre-treatment periods matters. The difference between CA
and the average control is different in the 70s and the 80s.

- Choice of control units matters. The average trends for
many control states are roughly parallel, but not all.

200 200

Average Control —  California Average Control @ California.

1970 1980 1990 2000 1980 1985 1990 1905



What we do when our checks fail

1. Give up. Hope they don't in your next project.

2. Try to fix it by preprocessing data, check again, iterate.
- subset the data to including comparable control units.
- choosing a reasonable time window.

Some people are great at this, but it is hard to do well!
| chose a subset of controls and a time window. Things look better. How do you feel?

- remember: unless | made this up a-priori, valid statistical inference isn't simple.
- to prevent p-hacking, we need to account for ‘multiple looks’ at the data.

Average Control — Calfornia Average Control - California

1980 1985 1990 1905 2000 1980 1985 1990 1985



Automating this is a good idea

It's easy

- Tell your computer what you'd check.
- And let it ‘preprocess’ for you.

It has many benefits

1. It cuts down on work for everybody.
- Doing preprocessing
- Describing and justifying preprocessing
- Reading descriptions of preprocessing
2. It's transparent and reproducible

- No p-hacking: we can theoretically account for automated ‘preprocessing’.
- Because the method description tells the ‘whole story’, there’s less appeal to authority.

3. It does a better job than you would. It can consider more possibilities.
- California is like neither Nevada or Utah, but it is like (2/3) Nevada + (1/3) Utah.

Automated preprocessing is easier to use and to trust.
It's a better community standard.



Automation Warm-Up: The Synthetic Control Estimator [Abadie et al., 2010]

1. we'll start by automating a simple treated/control comparison.

2. We replace the kind of thing we're good at with something a computer is good at.
+ Human: choosing a subset of controls to average
- Computer: choosing a weighted average of controls - a ‘synthetic control’

3. We ask that this average tracks California pre-treatment. This is just regression.

california; ~ Zw,; . control

)

4. If this fits, we attribute post-treatment differences to treatment.
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- Synthetic Control

1. Using pre-treatment data, we learn an average of controls that's predictive of California.

2. Assuming this relationship remain valid post-treatment, we use the same average of
controls to impute treatment-free observations for California.

- Forecasting

1. Using controls, we learn an average of periods forecasting what we see post-treatment.

2. Assuming this relationship remain valid for the treated, we use the same average of
periods to impute treatment-free observations for California.

- Synthetic Diff-in-Diff

1. We do both synthetic control and forecasting and combine via diff-in-diff.

2. Only one of these relationships has to remain valid.

3. Constant offsets get differenced out: our synthetic control can be parallel to California.

Pre-treatment

Pre-treatment Post-treatment

Exposed to Treatment Exposed to Treatment




The Synthetic Difference-in-Differences Diagram
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Synthetic Difference-in-Differences



The Synthetic Difference-in-Differences Estimator (SDID)

Synthetic diff-in-diff is diff-in-diff with a synthetic control and pre-treatment period.

1. Estimate unit weights & defining a synthetic control unit
using pre-treatment data.

A ~T -
wo +w Yco,pv’e = Yﬁ,pre'

2. Estimate time weights A defining a synthetic pre-treatment period
using control data.
)\(] =+ Yco,prcA ~Y

co,post*

3. Apply diff-in-diff to the resulting synthetic 2 x 2 panel

Synthetic Average
Pre-Treatment Post-treatment

~T ~T
w )/;o,preA w }/;o,post

Synthetic
Control

Y—

tr,post

Average
Treated

ir,pre




Estimating the Weights

1. We estimate the weights defining the synthetic control unit
via constrained least squares on the pre-treatment data.

2
@ = argmin Hwo +wT Yeopre — Y + ¢ Tpre|w]|?

tr,pre
wo,w

Neo
stw; >0, > wi=L

We require the synthetic control be a weighted average [as in Abadie et al,, 2010]
-+ each unit's weight is nonnegative
- collectively, their weights sum to one

2. We estimate the weights defining the synthetic pre-treatment period
via constrained least squares on the control data.
2

A= argmln H)\o + Yeo,pred — Y,

co,post

Tpre

St A >0, Y =1

We impose analogous constraints.



Evidence

Informal Theorem

In large square-ish panels with far fewer treated units than controls:

1. SDID is approximately unbiased and normal.
2. Its variance is optimal and estimable via clustered bootstrap.

Simulation Study

— SDID
— DID

Distribution of errors in simulation based on Bertrand, Duflo, and Mullainathan [2004].

Outcome is Log Wage; Assignment based on Minimum Wage. See Section 1

20



Application: California’s Cigarette Tax

- California is not an average state.
- California in the 90s is not California in the 70s.

- The more we account for that, the less impact
we attribute to its 1989 cigarette tax.’

synthetic synthetic

L T diff-in-diff

Estimated Decrease
annual packs per capita 27.4 19.8 13.4
averaged over 1989-2000

TFor details, see Section 2.



Theory of Identification and Inference




Theory of Identification and Inference

Potential Problems
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Underfitting

- We cannot get a parallel synthetic control.
- To do better, we'd need more/better controls or a fancier method.
- This is visible. When it comes up, we know to keep working.

Above we underfit when using only Southeastern states as controls for California.
CA % 0.36 NC + .32 LA + .32 GA + wp.
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Novel Confounding

- After treatment begins, something else shifts the relationship
between the treated states and the states in the synthetic control.
- e.g, if California’s wildfires worsened after it passed the cigarette tax.

- To distinguish this from a treatment effect, we'd need more information.
- This is a causal problem — statistical theory can't help us.

22
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Overfitting

- We get a parallel synthetic control, but it's an illusion.

It just looks good because the plot shows a line fit to its training data.
- Its comparability to the treated unit doesn’t generalize post-treatment.
This is invisible: failure to generalize looks like a treatment effect.

- If we're willing to assume a model, statistical theory can rule this out.
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A Simple Model to Distinguish ‘Signal’ from ‘Noise’

Yit = Lyt + 74 - treated;s + e, where  Ele | treated] = 0.

- L: deterministic ‘signal’ matrix of noiseless control potential outcomes.
- 7. deterministic matrix of treatment effects.

- & Noise matrix with iid gaussian (or similar) rows.

- We have autocorrelation over time.
- But no correlation between units.

- We're estimating the average of 7 on the exposed block, 7 = T post-
That's the average effect of treatment when and where it happened.

We'll consider treatment assignment fixed.
All that will be random is the noise.

23



A Strategy to Rule Out Overfitting

- We'll show our estimator is equivalent to an oracle estimator that can't overfit.
- This oracle uses unit and time weights that do not depend on the noise.

- The weights we actually estimate minimize squared error;
the oracle weights minimize expected squared error.

w = argmin E¢
wQ,w

2
wo + UJT Yco,m'e - Yﬁ_’p,.e + <2 Tp'r'e Hw”27

A = argmin E.
DYDY

)\O + YCO,pT‘e)\ = ¥

co,post

Neo e
st w20, > wi=1, A>0, > a=1
=il t=1

- The oracle’s error is easy to characterize because these weights are non-random.
- We can't actually use it the oracle — it's not possible to compute it.

- But we prove equivalence in a sense that makes this irrelevant.

- When equivalence holds, our claims about the oracle hold for the real estimator.

24



Theory of Identification and Inference

Oracle Behavior



The Oracle is Nice

The oracle estimator is just a weighted average of the elements of the panel Y.

F=Y— Ty

- -
tr,post co,post Yﬁ,pre)‘ —w YC(’,PWZ)"
This makes analysis easy. Its error separates cleanly into

- A bias component: replace Y with the signal L

- A noise component: replace Y with the noise .

It has everything you could want.

1. Approximate normality.
2. Low bias under plausible assumptions.

3. Optimal variance, estimable via the Bootstrap.

25



Normality and Inference

The oracle’s noise component is a simple weighted average of mean-zero noise.

= _ 7 o i\ _ ~T . 3
T — T — bias = (Etr,post Etr,pre)\> & (Eca,post ECUvP"‘E}‘) .

As noise for different units is independent:

- This average will be approximately normal by CLT.

- We can estimate variance by unit-clustered bootstrap.

26



The oracle estimator’s bias is caused by changes in the fit
of the oracle weights from training to generalization.

This change is small if:

- either set of weights fit well during training and generalize

- ..from pre to post for the unit weights @
- ..from control to treated for the time weights A

- neither does, but the errors one makes are predicted by the other.

— 7 5 T 5 ~
bias = <Lﬁ,post =& Lco,pnst - wo) - (Lﬁ,pre —w LCO"»PTC - W[)> A
counterfactual post-treatment bias of @ bias of @ over the synthetic pre-treatment period
_ I S XX - BT . Y X\
- (Lﬁ,post Ltr,prc)‘ AO) & (Lco,post LC”aP"‘e)\ )‘[)>'

counterfactual treated-unit bias of X bias of X on the synthetic control unit



Optimal Variance

- The oracle time-weights predict post-treatment noise.
- That helps them minimize expected squared error.
- In particular, they converge to the post-on-pre noise autoregression vector .

A= argmln

‘)\O i L((),pr(’)\ L

* b NoollZ2 00— )

co,post
Tpre
st Ay >0, Z As =1 where ¢ satisfies Ele, 5557 | €i,pre] = &i,preth-
=1l

- This lets us do better than we could if we'd observed treatment effect plus noise
Tyt + €4 for exposed observations it.

- That's essentially the variance of vanilla diff-in-diff.
- Our oracle time-weights get rid of the predictable part of this noise.

- It variance is that of the least squares estimator for 7 based on observations of

Tt treatedy + e forall it
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Theory of Identification and Inference

Oracle Equivalence



Theorem [Arkhangelsky, Athey, H, Imbens, and Wager, 2020]

In ideal circumstances, the difference between the real and oracle SDID estimator
is asymptotically negligible relative to the oracle’s standard deviation in panels with

1. comparable numbers of control units and pre-treatment periods,
2. few post-treatment periods,
3. fewer treated units is than the square root of the number of controls.

This fits with the California cigarette tax example.

- 38 control states, 19 years of pre-treatment data, and 1 treated unit.

One aspect might throw you. More treated units is ‘worse’.

- This is because we want the difference between the real and oracle
estimators to be smaller than the oracle’s standard deviation.

- When we add treated units, both decrease. Error does improve.
- But the oracle standard deviation can decrease faster,
leaving too little room for other sources of error to ‘disappear’ in the noise.

29



Ideal Circumstances

Circumstances are ideal if the signal matrix L

1. admits a ‘good’ oracle synthetic control and synthetic pre-treatment period

2. is ‘not too complex’

‘Good’ oracle synthetic controls/periods fit the signal well and are diffuse

- the oracle unit weights @ should distribute mass over enough control units,

- the oracle time weights X should, after fitting the noise autoregression vector 1,
distribute the rest of its mass over enough time periods.

Qualitatively, these are overlap assumptions: they hold if
- many control units are comparable to treated ones,
e.g, if selection of treatment is randomized (possibly non-uniformly).

- many pre-treatment periods are comparable to post-treatment ones,
e.g, if onset of treatment is randomized (possibly non-uniformly).



Ideal Circumstances

Circumstances are ideal if the signal matrix L

1. admits a ‘good’ oracle synthetic control and synthetic pre-treatment period

2. is ‘not too complex’

A ‘not too complex’ signal is one that looks different from a matrix of noise

- formally, | mean approximable by a moderate-rank matrix with moderate error.

- moderate meaning smaller than the square root of the number of control units.

Qualitatively, this means units follow mixtures of relatively few trends.

- e.g, a state’s behavior is not idiosyncratic, but characterized
by its blend of industries, environments, cultures, etc.



Proof Intuition

Deviation from the oracle is essentially bilinear in the weight differences.
F—F (@ —@)T Leopre (A—N)
< & = oll| Eeopreh = D)

Cauchy-Schwarz bounds depend on prediction error and coefficient error.
We characterize these using a version of the ‘slow rate’ analysis for the lasso.

Key ideas [H, 2020]

1. Including more controls won't hurt you.

- The set of weights we optimize over — nonnegative and summing to one — is small.
Error is essentially insensitive to its dimension.

2. Less than ‘ideal circumstances’ can be a problem. Error gets worse when:

- the signal is too complex
- the fit and dispersion of the oracle weights is poor



Panel Data Models and Reality




There’s a wide variety of methods for
estimating treatment effects in panel data.

1. Synthetic Difference-in-Differences and methods like it

2. Longitudinal studies methods from Biostatistics
[van der Laan and Robins, 2003]

3. Nonseparable panel methods from Econometrics
[Chernozhukov, Fernandez-val, Hahn, and Newey, 2013]

This is confusing. We have a bunch of methods and one task.

- It's not clear how to compare them.

- Each assumes and attempts to exploit some structure in the data.
- Related theory and simulations tend to assume this structure exists.

- It's reasonable to have many approaches. Panel data is many things.
- But to choose between them, we need to understand them in more general terms.

32



Longitudinal vs. Panel Methods

Longitudinal Approach SDID-Type Panel Approach

- We carefully compare complex - We assume simple, often additive,
treatment trajectories. effect of treatment.

- Randomness arises from - Randomness arises from
actual treatment randomization. hard-to-interpret ‘additive noise’.

- We adjust for confounding assuming - We adjust for confounding assuming
the patient’s response depends on rich shared structure relating units
their medical history alone. (mixtures of trends).

- In the longitudinal approach, we have a faithful model of reality: we estimate
clearly defined treatment effects, relying on actual randomization of treament.

- With SDID, we adjust for confounding using a rich model of shared structure.

- We should find ways to synthesize the best parts of both approaches.

- Getting identification via actual (or at least conceptual) randomization
- Adjusting for confounding with rich shared structure

33



Thank you!

arxiv.org/abs/1812.09970
github.com/synth-inference/synthdid
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arxiv.org/abs/1812.09970
github.com/synth-inference/synthdid
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