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Estimating the Treatment-Specific Mean

We observe iid units described by

• Xi, a vector of covariates

• Wi, a level of treatment

• Yi = Yi(Wi), an outcome under that level of treatment

When treatment assignment is unconfounded, the treatment-specific

mean is an average involving the regression function of Y on X,W .

E[Yi(1)] = E[m(Xi, 1)] where m(Xi,Wi) = E[Yi | Xi,Wi].

It’s the average of its treated arm value m(Xi, 1).

This arm isn’t the one we actually observe for all units.

What we observe is the natural arm value, m(Xi,Wi), plus ‘noise’.

Yi = m(Xi,Wi) + εi, E[εi | Xi,Wi] = 0.
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Basic Estimation Approaches: Imputation

To estimate ψ(m) = E[m(X, 1)] :

1. Find an estimator for the regression function m.

2. Average its treated arm value m̂(Xi, 1) over the sample.

ψ̂imp = n−1
∑
i≤n

m̂(Xi, 1)
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Basic Estimation Approaches: Weighting

To estimate ψ(m) = E[m(X, 1)] :

1. Find weights γ̂ψ that approximately equate

• averages of the treated arm value of m

• weighted averages of the natural arm value of m

n−1
∑

m(Xi, 1) ≈ n−1
∑

γ̂ψ(Xi,Wi)m(Xi,Wi).

2. Take a weighted average of the observed outcomes Yi,

which are the natural arm value (plus noise).

ψ̂ipw = n−1
∑

γ̂ψ(Xi,Wi)Yi

Inverse propensity weights will do. For each square integrable function m,

E[m(X, 1)] = E[γψ(X,W )m(X,W )] for γψ(X,W ) =
1(W = 1)

P (W = 1 | X)
.
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Augmented Inverse Propensity Weighting (AIPW)

• Imputation works if we estimate the regression function well.

• Weighting works if we estimate the inverse propensity weights well.

• Combining both yields a more robust estimator: AIPW

(Robins, Rotnitzky, and Zhao, 1995)

We estimate the error of the imputation estimator

by weighting our regression residuals — and subtract it off.

ψ̂aipw = n−1
∑

m̂(Xi, 1)
imputation estimator

− n−1
∑

γ̂ψ(Xi,Wi)(m̂(Xi,Wi)− Yi
estimated imputation error

).

The weighting works just like before.

• The error of the imputation estimator is the average of the treated

arm value of the regression error function δm = m̂−m.

• The regression residuals are its natural arm value (plus noise).

• Our weights are chosen to approximately equate them.
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A Common Worry: Instability of (A)IPW

Inverse propensity weighting has a reputation for extreme variability

when treatment is rare within some strata (Kang and Schafer, 2007).

In part, this is based on a bad example (Robins et al., 2007). In K & S,

• Treatment is so rare for some that estimation is nearly impossible.

• An imputation estimator miraculously works.

But we should also blame the usual IPW workflow.

1. Estimate the prop. score by regressing a treatment indicator on X.

2. Use its reciprocal to form inverse propensity weights,

γ̂ψ(w, x) = 1(w = 1) / P̂ (W = 1 | X = x).

Inversion dramatically inflates errors where the propensity score is small.

1

p̂
− 1

p
=
p− p̂
p̂p

.
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The Balancing Workflow

ψ̂aipw − ψ(m)

= n−1
∑

δm(Xi, 1)− n−1
∑

γ̂ψ(Xi,Wi)δm(Xi,Wi) [imbalance]

+ n−1
∑

[γ̂ψ(Xi,Wi)εi +m(Xi, 1)− ψ(m)] [mean zero]

Error arises primarily from a difference between

• the average of the treated arm value of δm
• the weighted average of the natural arm value of δm

We call this the imbalance in the function δm = m̂−m.

If we think δm will be in some set M — a model for δm — we can

choose weights controlling the maximal imbalance in that model.

IM(γ̂) = sup
f∈M
|n−1

∑
f(Xi, 1)− n−1

∑
γ̂(Xi,Wi)f(Xi,Wi)|.
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The Minimax Approach to Balancing

Accounting for the mean-zero term as well, we minimize the

maximal mean squared error of our estimator in the model.

γ̂ = argmin
γ

CMSEM(γ) := I2M(γ) +
σ2

n
‖γ‖2L2(Pn)

Specifically, maximal conditional-on-design mean squared error for:

• regression error functions δm in the model M
• variances Var [Yi | Xi,Wi] are bounded by σ2
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The Minimax Weights

These weights γ̂ are a method of moments

estimate of the inverse propensity weights γψ.

They approximately solve a set of sample moment conditions:

approximate balance conditions for functions in our model M.

n−1
∑

γ̂(Xi,Wi)f(Xi,Wi) ≈ n−1
∑

f(Xi, 1) ∀f ∈M,

E γψ(X,W )f(X,W ) = E f(X, 1) ∀f : E f2(X,W ) <∞.

The inverse propensity weights uniquely solve analogous

population balance conditions for all square integrable functions.

This is a direct estimate of the inverse propensity weights;

there’s no error-inflating inversion step in this workflow.

We get stable estimates, even in the problematic K & S example.

(H, Maleki, and Zubizarreta, 2019)
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The Approach with Discrete Covariates

These are poststratification weights if our model is completely general.

Maximal imbalance IM(γ) =∞ unless we weight treated units so their

empirical covariate distribution exactly matches the whole sample’s.

IM(γ) = sup
fx,w

n−1
∑
i,x,w

fx,w

[
1{(Xi, 1) = (x,w)}

− 1{(Xi,Wi) = (x,w)}γ(x,w)
]

=∞ unless γ(x,w) = 1{w = 1}
∑
i 1{Xi = x}∑

i 1{(Xi,Wi) = (x,w)}
.
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The Approach with Continuous Covariates

If covariates are continuous, we can’t do this.

No two units will have exactly the same covariates, so we need there

to be a sense in which two empirical distributions are close enough.

We can control imbalance only in models that limit discontinuity, e.g.,

1. Functions with several (> dim(X)/2) bounded derivatives.

2. Functions of bounded (Hardy-Krause) variation.

This is just a requirement that we can learn about a function from

its samples. We need the same to do any kind of estimation.
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Asymptotic Efficiency (H and Wager, 2017)

Choose weights minimizing CMSEM for a model M that is

convex, uniformly bounded, and admits a uniform CLT.1

Our estimator is asymptotically efficient if

1. the inverse propensity weighting function γψ is square integrable.

2. our regression is mean-square consistent: ‖δm‖L2(P) = op(1).

3. M is a valid model for our regression error: δm ∈ αM, α = Op(1).

Asymptotic efficiency means that the usual confidence intervals are

asymptotically valid with minimal length. For example,

• Wald type intervals: ψ̂ ± 1.96 se(ψ̂).

• Bootstrap intervals.

1Our example models, as specified in parentheticals, do satisfy these assumptions.
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Practical Considerations: Choosing Parameters

We have three ‘parameters’ to choose.

1. Noise level σ2.

2. Outcome regression m̂.

3. Regression error model M

The good news is that the estimator is adaptive: it is sensitive to

properties of the regression error δm that aren’t baked into our model M.

It behaves a bit like we had perfectly modeled the regression error’s

1. consistency, measured by mean squared error ‖δm‖L2(Pn)
.

(H and Wager, 2017)

2. smoothness, measured by polynomial decay of its fourier coefficients.

(H, Maleki, and Zubizarreta, 2019, in RKHS models)

And it’s not sensitive to σ: σ = 1 is usually fine in theory and practice.

This means we do pretty well with reasonable default parameters.

This is good; we still have a lot to learn about automated tuning.
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Other Estimands

Estimating many other things is a trivial change — often one line of code.

ψ(m) = E[m(X, 1)−m(X, 0)] average treatment effect

ψ(m) = E[m(X,π(X))] average policy value

ψ(m) = E
[
∂

∂w
m(X,w) |w=W

]
average slope

ψ(m) = E[h(X,W,m)] generally, where h(x,w,m) is linear in m.

Substitute h for ‘treated arm value’ earlier in the talk and it all works.

(H and Wager, 2017)

The inverse prop. weights γψ generalize to the Riesz representer of ψ.

(Chernozhukov, Escanciano, Ichimura, and Newey, 2016)

γψ solves Eh(X,W, f) = E γψ(X,W )f(X,W ), ∀f : E f2(X,W ) <∞.

When ψ is mean-square-continuous, the Riesz representation theorem

guarantees that this solution exists and is square integrable.
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Discontinuous Estimands

To estimate discontinuous functionals ψ, like the CATE at a point,

we can use this approach to estimate a smoothed approximation.

ψ(m) = m(x, 1)−m(x, 0) at some point x

≈ E[K(x,X){m(X, 1)−m(X, 0)}] / ω(K,x)

Typically we smooth by convolution with a kernel K.

(Chernozhukov, Newey, Robins, and Singh, 2018)
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What makes balancing work?

Balancing folks emphasize three principles:

(i) directly balancing the sample, not the population.

(ii) balancing the right model M, not just a convenient one.

(iii) estimating the inverse propensity score, not its inverse.

Do we need all three? We could cross-fit when estimating the weights.

1. Minimize CMSEM for half the sample to get an estimate

γ̂ψ of the inverse propensity weighting function.

2. Evaluate it for units on the other half to get weights.

Is this balancing? This violates (i) but maybe (ii) and (iii) are enough.

Intuition about own-observation bias suggests it might work better.

Similar methods do work well in theory and in simulations.

(Chernozhukov, Newey, Robins, and Singh, 2018)

Cross-fitting and directly balancing the sample are at odds,

and we don’t know when to prefer one over the other.
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Where we’re going

Historically, there’s been tension between folks who emphasize simple

balance properties — like from poststratification — and those who

emphasize semiparametric efficiency. But in the last decade, with more

general notions of balance, it’s become harder to see the boundary

between these approaches.

Still, there’s a stereotype that balancing estimators and semiparametric

estimators have fundamentally different robustness properties.

balancing near-minimaxity for the observed design

semiparametric double robustness

The truth is, these stereotypical properties may just be the ones

that are easiest to prove.

There’s work to be done in understanding exactly how these properties

arise, and whether they are compatible or we must make a choice. This

isn’t work for one faction or another. It’s for all of us.
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